Impact of 4Ds on Blueprint Scenarios

J. Richard Kuzmyak, Transportation Consultant, LLC Caliper Corporation

Assessment of Initial Scenario Results

VMT Benefits attributable to:

- Jobs/housing balance
- Targeted elimination of longest commutes
- Greatly improved transit service
- Significant clustering around transit nodes

Preliminary Assessment:

- Primary impact is on commute travel
- Have not yet tapped land use (4D) effects

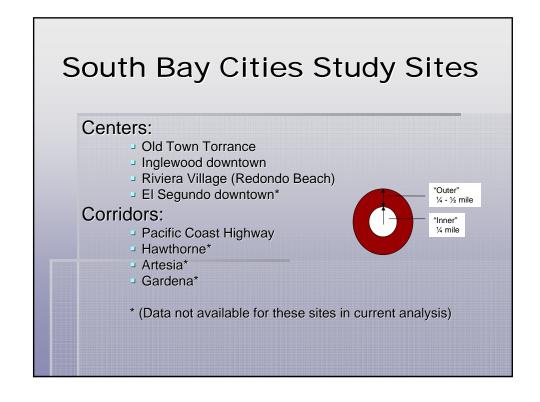
What Are the "4Ds"

Local Land Use:

- 1. Density
- 2. Diversity (mix and balance)
- 3. Design (walkability, connectivity)

Surrounding Land Use

4. Regional Accessibility


How the 4Ds Impact Travel

- Lower auto ownership rates due to:
 - Better regional accessibility especially transit
 - More local opportunities lessen need for auto dependence
- Reduced vehicle miles of travel due to:
 - Fewer autos owned
 - More trips by walking
 - Shorter auto trips
- Local land use provides more alternatives for non-work travel

Key Findings from Solimar South Bay Cities Study

People who live in mixed-use centers:

- Make a high percent of their non-work trips to neighborhood center
- A high percentage of neighborhood center trips are by walk or bike
- Result is virtually independent of commuting behavior: most still drive long distances to work place

ORi 3.32 ORo 3.45 NGi 1.80	Center All 1.92 1.88	ery Shop Center 1 64	All	nal Shop Center				hool
ORo 3.45 NGi 1.80		1.64		Center	<u>All</u>	Center	All	Center
NGi 1.80	4 00 0 40	1.04	2.23	1.49	1.80	1.16	0.83	0.55
	1.66 2.19	1.54	1,83	1.22	1.84	0.82	1.70	1.13
10 - 0.04	1.30 3.20	2.40	2.60	0.75	2.33	0.25	1.25	0.00
NGo 2.31	1.18 2.30	1.80	2.08	1.43	1.34	0.52	1.51	0.96
IVi 3.13	1.78 2.61	2.20	1.86	1.39	1.60	1.50	1.41	0.92
IVo 3.15	1.85 2.63	2.29	2.04	1.59	1.65	1.56	0.77	0.18
CH 3.00	1.99 2.35	1.71	2.30	1.70	1.48	1.48	2.26	1.61

Percent of Trips to Neighborhood Center by Mode

	<u>Auto</u>	<u>Transit</u>	Walk/Bike/Other
TORi	39%	0%	61%
TORo	65%	1%	34%
INGi	43%	14%	43%
INGo	69%	0%	31%
RIVi	28%	0%	72%
RIVo	51%	0%	49%
PCH	73%	0%	26%

Commuting Behavior Quite Different from Non-Work

	Unemp, Retired, Work at <u>Home</u>	<u>Auto</u>	<u>Transit</u>	Walk/ Other	Work > 10 min from <u>Home</u>	Free <u>Parking</u>
TORi	21%	71%	2%	6%	97%	97%
TORo	15%	75%	0%	10%	83%	92%
INGi	50%	50%	0%	0%	67%	100%
INGo	28%	68%	0%	4%	90%	71%
RIVi	33%	65%	0%	2%	94%	91%
RIVo	24%	72%	1%	3%	94%	95%
PCH	29%	68%	2%	1%	92%	92%

Limitations in Using SBC Results in 4Ds Analysis

- No real "control" situations to compare against
- Samples are for individuals, not households, and do not account for key household characteristics
- Proportions are user estimated, not derived from actual trip data
- Not currently tied to any quantitative 4D measures

Other Approaches Considered

- SCAG VMT TAZ level regression model based on density and TOD (SungHo Ryu)
 - > Good impacts but density a coarse measure of land use
- Adopt Mark Futterman approach
 - > Only increases walk share by 2 to 4%; already being used?
- Compare places with SG characteristics with non-SG, develop adjustment factors
 - > Still investigating difficulty identifying example sites
- Reduce average trip length assumptions in TAZs with SG activity
 - > Still a possibility may be shorter in SG zones
- Reduce average trip lengths in non-work trip tables by adjusting friction factors
 - > Still a possibility but risks tampering with SCAG model integrity
- Apply VMT model approach, but with Baltimore coefficients
 - > Argument that LA coefficients smaller because can't find enough local samples
 - > Transferability is always a cautious process

Current Recommended Approach

- "Post-Processor" Apply VMT factoring methods to account for 4D effects
- "Pivot" off of first stage forecasts performed with SCAG regional model
- Estimate changes in household auto ownership and VMT corresponding to land use <u>and</u> demographics
- Develop net VMT adjustment ratio for each TAZ, and for each scenario

Our Land Use Measures

Regional Accessibility:

- Summation of total jobs in each TAZ divided by peak period travel time from origin TAZ to that TAZ
- > Our measure: Total jobs by auto PLUS total jobs by transit

Diversity:

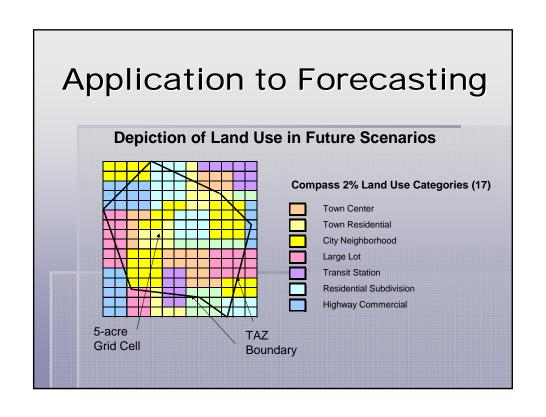
Land Use Mix: Proportionate balance of 12 land uses within ¼ mile of household

Design:

- Walk Opportunities: Summation of all retail and service activities within ¼ mile of household, divided by walk time
- Activities assigned SIC-based value weight adapted from 1984 survey of LA neighborhoods by Bannerjee & Baer

Vehicle & DVMT Models for SCAG Region (2001 HTS)

	Veh	Vehicles per Household					Daily Household Driver VMT			
				Baltimore				Baltimore		
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	Elasticity	<u>2005</u>	<u>Coeff</u> 15.828	<u>Mean</u>	Elasticity	<u>2005</u>		
HH Size	0.234	2.488	0.302	0.292	5.016 [10.18]	2.493	0.232	0.129		
Workers	,,,,,,,				7.437 [8.76]	1.283	0.177	0.243		
Income	0.1708 [38.39]	4.556	0.405	0.578	3.591 [10.05]	4.563	0.304	0.37		
Vehicles					7.137 [9.72]	1.946	0.258	0.333		
Reg Access	-0.000001 [-9.45]	173767	-0.090	-0.228	-0.00007 [-10.56]	173438	-0.226	-0.127		
LU Mix	-0.1734 [-3.57]	0.2595	-0.023	-0.173	-8.469 [-2.41]	0.2597	-0.041	-0.089		
Walk Opps	-0.14878 [-3.10]	0.071	-0.006	-0.396	-0.0628 [-0.023]	0.0828	-0.0001	-0.097		
R-squared	0.255				0.1026					
# Observ	10,377	(HHs wi	th DVMT <	300 miles)	10,133	(HHs wi	th DVMT <	300 miles)		
	Vehicles	1.922			HH VMT	53.804				


Current and Forecast Values for SED and Policy Variables									
		2001	Scenarios Typica						
	<u>Mean</u>	<u>Min</u>	<u>Max</u>	Std. Dev	SG Area	non-SG			
HH Size	2.488	1	9	1.390	?	?			
Workers	1.283	0	6	0.853	?	?			
Income	4.556	1	8	1.831	?	?			
Vehicles	1.922	0	8	0.956	calc	calc			
Reg Access	173,767	24,578	538,364	91,072	700k+	300k			
LU Mix	0.2595	0	0.821	0.171	0.8	<0.1			
Walk Opps	0.071	0	6.645	0.188	5+	<0.1			

	10101	36	αC	urre	III S	
	н	- Vehicles	.		HH Daily V	МТ
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	<u>TEST</u> 0.7910	<u>Coeff</u> 15.828	<u>Mean</u>	<u>TEST</u> 15.828
HH Size	0.234 [39.83]	2.488	2.488	5.016 [10.18]	2.493	2.488
Workers	(00.00)			7.437 [8.76]	1.283	1.283
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556
Vehicles		1.922	1.117	7.137 [9.72]	1.946	1.117
Reg Access	-0.000001 [-9.45]	173767	300000	-0.00007 [-10.56]	173438	300000
LU Mix	-0.1734 [-3.57]	0.2595	0.800	-8.469 [-2.41]	0.2597	0.800
Wtd Opps	-0.14878 [-3.10]	0.071	4.000	-0.0628 [-0.023]	0.0828	4.000
				нн vмт	53.80	34.18

SED								
	HI	H Vehicles	•	HH Daily VMT				
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	TEST 0.7910	<u>Coeff</u> 15.828	<u>Mean</u>	TES 15.82		
HH Size	0.234 [39.83]	2.488	2.488	5.016 [10.18]	2.493	2.488		
Workers				7.437 [8.76]	1.283	1.283		
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556		
Vehicles		1.922	2.077	7.137 [9.72]	1.946	2.077		
Reg Access	-0.000001 [-9.45]	173767	50000	-0.00007 [-10.56]	173438	5000		
LU Mix	-0.1734 [-3.57]	0.2595	0.100	-8.469 [-2.41]	0.2597	0.100		
Wtd Opps	-0.14878 [-3.10]	0.071	0.050	-0.0628 [-0.023]	0.0828	0.050		
				HH VMT	53.80	64.71		

				rger			
	HI	- Vehicles	5	HH Daily VMT			
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	<u>TEST</u> 0.7910	<u>Coeff</u> 15.828	Mean	TEST 15.82	
HH Size	0.234 [39.83]	2.488	3.000	5.016 [10.18]	2.493	3.000	
Workers				7.437 [8.76]	1.283	1.36	
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556	
Vehicles		1.922	1.237	7.137 [9.72]	1.946	1.237	
Reg Access	-0.000001 [-9.45]	173767	300000	-0.00007 [-10.56]	173438	30000	
LU Mix	-0.1734 [-3.57]	0.2595	0.800	-8.469 [-2.41]	0.2597	0.800	
Wtd Opps	-0.14878 [-3.10]	0.071	4.000	-0.0628 [-0.023]	0.0828	4.000	
				нн vмт	53.80	38.18	

HHs						
	н	H Vehicles		HH Daily VMT		
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	TEST 0.7910	<u>Coeff</u> 15.828	<u>Mean</u>	TEST 15.82
HH Size	0.234 [39.83]	2.488	3.000	5.016 [10.18]	2.493	3.000
Workers				7.437 [8.76]	1.283	1.36
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556
Vehicles		1.922	2.077	7.137 [9.72]	1.946	2.077
Reg Access	-0.000001 [-9.45]	173767	50000	-0.00007 [-10.56]	173438	50000
LU Mix	-0.1734 [-3.57]	0.2595	0.100	-8.469 [-2.41]	0.2597	0.100
Wtd Opps	-0.14878 [-3.10]	0.071	0.050	-0.0628 [-0.023]	0.0828	0.050
				HH VMT	53.80	68.70

Values of 4D Variables for Individual Grid Cells

Calculating VMT for TAZ

VMT, TAZ *i* = SUM (VMT, Grid Cell *j* x Households, Grid Cell *j*) over all cells in TAZ *i*

Where

VMT in Grid Cell j =

f (HH Size, Income, Workers, Vehicles, Regional Accessibility, LU Mix, and Walk Opps)

Do this for each TAZ in all scenarios - GV 2% & Base

Next Steps

- Try some additional model formulations
 - Study selected "smart growth" areas
 - Test additional variable formulations
 - Test apply elasticities from Baltimore model
- Conduct Analysis for RTP
 - Estimate VMT effects for all scenarios
 - Compare key differences across scenarios
 - Recommend final adjustments